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A relaxation-function theory for the dynamic spin susceptibility in the t-J model is presented. By a sum-
rule-conserving generalized mean-field approximation �GMFA�, the two-spin correlation functions of arbitrary
range, the staggered magnetization, the uniform static susceptibility, and the antiferromagnetic correlation
length are calculated in a wide region of hole doping and temperatures. A good agreement with available exact
diagonalization �ED� data is found. The correlation length is in reasonable agreement with neutron-scattering
experiments on La2−�Sr�CuO4. Going beyond the GMFA, the self-energy is calculated in the mode-coupling
approximation. The spin dynamics at arbitrary frequencies and wave vectors is studied for various temperatures
and hole doping. At low doping a spin-wave-type behavior is found as in the Heisenberg model, while at higher
doping a strong damping caused by hole hopping occurs, and a relaxation-type spin dynamics is observed in
agreement with the ED results. The local spin susceptibility and its � /T scaling behavior are calculated in a
reasonable agreement with experimental and ED data.
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I. INTRODUCTION

It is generally believed that charge-carrier interaction with
spin fluctuations in the cuprate high-temperature supercon-
ductors is the origin of their anomalous normal-state proper-
ties and may be responsible for the superconducting
transition �see, e.g., Ref. 1�. Inelastic neutron-scattering ex-
periments have revealed quite a complicated behavior of the
spin-fluctuation spectra in cuprates.2,3 Therefore, studies of
spin fluctuations in these materials are essential in elucidat-
ing the nature of high-temperature superconductivity. Two
limiting cases can be well described. In the undoped insulat-
ing phase the quasi-two-dimensional Heisenberg model for
localized spins gives a reasonable description of the spin-
fluctuation spectra �see, e.g., Ref. 4�, while in the overdoped
region the random-phase approximation �RPA� for weakly
correlated itinerant electrons can be applied �see, e.g., Ref.
5�.

However, the region of light and optimal doping �the so-
called “pseudogap phase”�, where localized spins on copper
sites strongly interact with correlated charge carriers is much
more difficult to study. This region should be treated within a
model of strongly correlated electrons such as the Hubbard
model6 or the t-J model.7 The charge-carrier motion in the
t-J model is described by the Hubbard projection operators,
whose commutation relations are more complicated than
those of Fermi or Bose operators. Various approaches have
been used to study the spin dynamics in the t-J model �for a
review see, e.g., Refs. 8 and 9�. In particular, in the slave
boson or fermion methods, a local constraint prohibiting a
double occupancy of any quantum state is difficult to treat
rigorously. An application of a special diagram technique for
Hubbard operators to the t-J model results in a complicated
analytical expression for the dynamic spin susceptibility
�DSS�.10 Studies of finite clusters by numerical methods
were important in elucidating static and dynamic spin inter-
actions, though they have limited energy and momentum
resolutions �see, e.g., Refs. 11–13�.

To overcome this complexity, we apply the projection
Mori-type technique elaborated for the two-time thermody-
namic Green’s function �GF�.14–16 In this method an exact
representation for the self-energy �or polarization operator�
can be derived which, when evaluated in the mode-coupling
approximation, yields physically reasonable results even
for strongly interacting systems. As our calculations have
shown, the decoupling of the correlation function of currents,
i.e., �dSq

+ /dt�, in Ref. 17 is insufficient for obtaining reason-
able results. Therefore, in the present paper, in studying the
DSS ��q ,��=−��Sq

+ �S−q
− ��� �written in terms of the GF �Ref.

14�� the mode-coupling approximation in the paramagnetic
phase is applied to the correlation functions of the forces,
i.e., �d2Sq

+ /dt2�.16 A similar approach based on the Mori pro-
jection technique for the single-particle electron GF and spin
GF has been used in Refs. 18–21. The magnetic-resonance
mode observed in the superconducting state was studied
within the memory-function approach in Refs. 20 and 22–24.

In this paper we use the spin-rotation-invariant relaxation-
function theory for the DSS in the t-J model derived by us in
Ref. 25 to calculate the static properties in the generalized
mean-field approximation �GMFA� similarly to Ref. 26 and
the dynamic spin-fluctuation spectra using the mode-
coupling approximation for the force-force correlation func-
tions. Thereby, we capture both the local and itinerant char-
acter of charge carriers in a consistent way. In calculating the
static properties, in particular, the static susceptibility and
spin-excitation spectrum, we pay particular attention to a
proper description of antiferromagnetic �AF� short-range or-
der �SRO� and its implications on the spin dynamics. For the
undoped case described by the Heisenberg model our results
are similar to those in Refs. 27 and 28. For a finite doping
our theory yields a reasonable agreement with available ex-
act diagonalization �ED� data and neutron-scattering experi-
ments.

The paper is organized as follows. In the next section the
t-J model is formulated in terms of the Hubbard operators
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and basic formulas for the static spin susceptibility and the
self-energy within the relaxation-function theory25 are pre-
sented. Numerical results for the static properties and spin-
fluctuation spectra are given in Sec. III, where their tempera-
ture and doping dependences are analyzed. The conclusion is
given in Sec. IV. Details of the calculations are discussed in
the Appendix.

II. RELAXATION-FUNCTION THEORY

A. Basic formulas

We start with the t-J model on the square lattice,

H = − �
i�j,�

tijXi
�0Xj

0� − ��
i�

Xi
��

+
1

4 �
i�j,�

Jij�Xi
��̄Xj

�̄� − Xi
��Xj

�̄�̄� , �1�

which is written in terms of the Hubbard operators �HOs�
�Ref. 6� Xi

��= �i ,���i ,��, for three possible states at a lattice
site i: for an empty site �i ,��= �i ,0� and for a singly occupied
site �i ,��= �i ,�� with spin ��1 /2���= 	 , �̄=−��. The HOs
obey the multiplication rule Xi

��Xi
�
=Xi

�
, and the complete-
ness relation Xi

00+��Xi
��=1, which preserves rigorously the

constraint of no double occupancy of any lattice site. The
spin and number operators of the model are given by Si

�

=Xi
��̄, Si

z= �1 /2����Xi
��, and ni=��Xi

��. The chemical po-
tential � is determined from the equation for the average
electron density n=���Xi

���=1−�, where �= �Xi
00� is the

hole concentration.
In Ref. 25 we have derived the general expression for the

DSS ��q ,��=−��Sq
+ �S−q

− ��� ,

��q,�� = �q
�q

2

�q
2 + ���q,�� − �2 . �2�

The static spin susceptibility �q, is related to a generalized
mean-field spin-excitation spectrum �q by the equation

�q = �Sq
+,S−q

− � = m�q�/�q
2 �3�

with m�q�= ��iṠq
+ ,S−q

− ��. Here, the Kubo-Mori scalar product
is defined as �see, e.g., Ref. 16�

�A�t�,B� = 	
0

�

d��A�t − i��B�, � = 1/kBT . �4�

The self-energy is given by25

��q,�� =
1

m�q�
��− S̈q

+�− S̈−q
− ���

�proper�, �5�

where

��A�B��� = − i	
0



dtei�t�A�t�,B� �6�

is the Kubo-Mori relaxation function and its “proper” part
means that it does not contain parts connected by a single
relaxation function in the GMFA. The spin-fluctuation spec-

trum is given by the imaginary part of the DSS, Eq. �2�,

���q,�� =
− ����q,��m�q�

��2 − �q
2 − ����q,���2 + �����q,���2 , �7�

where ��q ,�+ i0+�=���q ,��+ i���q ,�� and ���q ,��
=−���q ,−�� and ���q ,��=���q ,−���0 are the real and
imaginary parts of the self-energy, respectively.

B. Static properties

To calculate the static susceptibility and the spin-
excitation spectrum �q in Eq. �3�, we use the equality

m�q� = ��iṠq
+,S−q

− �� = �− S̈q
+,S−q

− � , �8�

where

m�q� = − 8t�1 − 
q�F1,0 − 8J�1 − 
q�C1,0 �9�

with 
q= �1 /2��cos qx+cos qy� �we take the lattice spacing a
to be unity�, Fn,m
FR= �X0

�0XR
0��, Cn,m
CR= �S0

+SR
− �, and

R=nex+mey. Here, we take into account the hopping inte-
gral tij and the exchange interaction Jij for the nearest neigh-
bors only denoted by t and J, respectively.

To calculate the correlation function �−S̈q
+ ,S−q

− � in Eq. �8�,
we take the site representation and use the decoupling pro-
cedure which is equivalent to the mode-coupling approxima-
tion for the equal-time correlation function �see Appendix

A�. We obtain �−S̈q
+ ,S−q

− �=�q
2�Sq

+ ,S−q
− � and, by comparison

with Eq. �3�, we get the spin-excitation spectrum

�q
2 = 8t2�1�1 − 
q��1 − n − F2,0 − 2F1,1�

+ 4J2�1 − 
q���2
n

2
− �1C1,0�4
q + 1�

+ �2�2C1,1 + C2,0�� . �10�

The decoupling parameters �1, �2, �1, and �2 are explained
in Appendix A. Thus, the static susceptibility can be calcu-
lated from Eq. �3�.

The AF correlation length � may be calculated by expand-
ing the static susceptibility in the neighborhood of the AF
wave vector Q= �� ,��, �Q+k=�Q / �1+�2k2�.27,29 We get

�2 =
8J2�1�C1,0�

�Q
2 . �11�

The critical behavior of the model, Eq. �1�, is reflected by the
divergence of �Q and � as T→0, i.e., by �Q�T=0�=0. In the
phase with AF long-range order �LRO� which, in two dimen-
sions, may occur at T=0 only, the correlation function CR is
written as27,29

CR =
1

N
�

q�Q
CqeiqR + CeiQR, �12�

where Cq= �Sq
+S−q

− �. The condensation part C determines the
staggered magnetization which is defined in the spin-
rotation-invariant form
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m2 =
3

2N
�
R

CRe−iQR =
3

2
C . �13�

The static susceptibility, the correlation functions, the corre-
lation length, and the magnetization are calculated in the
GMFA for arbitrary temperatures and doping �see Sec.
III A�. Then, the GMFA results are used for the calculation of
the self-energy �see Sec. III B�.

C. Self-energy

The self-energy, Eq. �5�, can be written in terms of the
corresponding time-dependent correlation function as

��q,�� =
1

2�m�q�	−



d��
e��� − 1

���� − ���

�	
−



dtei��t�S̈−q
− S̈q

+�t��proper. �14�

The self-energy is calculated in the mode-coupling approxi-
mation for the multisite correlation functions resulting from

the operator S̈q
+�t� as outlined in Appendix B. We consider

only the imaginary part of the self-energy, Eq. �14�, since the
real part is given by the dispersion relation.14

As it turns out by numerical evaluations �see Sec. III B�,
the largest contributions come from two diagonal terms. For
the first term �J� we get

�J��q,�� =
��2J�4

2m�q��N���
1

N2 �
q1,q2

	
−



d�1d�2�q1q2q3

2

+ �q1q2q3
�q2q1q3

�N��1�N��2�N�� − �1 − �2�

�Bq1
��1�Bq2

��2�Bq3
�� − �1 − �2� , �15�

where N���= �e��−1�−1 and q=q1+q2+q3. The spectral
density of the spin-fluctuation spectrum Bq���
= �1 /�����q ,�� is given by Eq. �7�. The vertex for the spin-
spin scattering reads �cf. Ref. 28�

�q1q2q3
= 4�
q3+q1

− 
q2
��
q3

− 
q1
�

− 
q1
+ 
q3

+ 
q2+q3
− 
q2+q1

. �16�

The second term �t� is given by

�t��q,�� =
��2t�4

m�q��N���
1

N2 �
q1,q2

	
−



d�1d�2�q1q2q3

2

+ �q3q2q1

2 �N��2�n�� + �1 − �2��1 − n��1��

���1/4�Nq2
��2� + Bq2

��2��

�Aq1
��1�Aq3

�� + �1 − �2� , �17�

where n���= �e��+1�−1. Here, the single-particle
spectral function Aq���=−�1 /��Im��Xq

0� �Xq
�0��� and the

charge-susceptibility spectral function Nq���=−�1 /
��Im��nq �n−q��� are introduced. The vertex for the spin-hole
scattering reads

�q1q2q3
= 4�
q3+q2

− 
q1
�
q3

+ 
q2
− 
q1+q3

. �18�

The remaining terms in the self-energy are considered in
Appendix B. In Sec. III B we calculate the diagonal terms for
various doping and temperatures.

We would like to emphasize that in our calculation of the
self-energy in Eq. �17� contributions from the charge and
spin excitations are taken into account explicitly by the spec-
tral densities Nq2

��2� and Bq2
��2�. Contrary to this, in Refs.

20 and 22 these terms have been approximated by some kind
of static or mean-field-type expressions. This results in the
self-energy of the form similar to that given by a conven-
tional particle-hole loop diagram used in the weak coupling
theory such as RPA. This form of the self-energy can be
readily obtained from our expression �17�, if we disregard
the charge fluctuation contribution and neglect a small spin
excitation energy �2 in comparison with the Fermi energy
in the Fermi function and in the hole spectral function: n��
+�1−�2�Aq3

��+�1−�2��n��+�1�Aq3
��+�1�. Then we

can integrate over �2 in Eq. �17� which gives
�−

 d�2N��2�Bq2
��2�=Cq2

, where Cq= �Sq
+S−q

− �. As a result
the self-energy takes the form

�t��q,�� =
��2t�4

m�q��
1

N2 �
q1,q2

Cq2
�q1q2q3

2 + �q3q2q1

2 �

�	
−



d�1�n�� + �1� − n��1��

�Aq1
��1�Aq3

�� + �1� , �19�

which is similar to that found in the one-loop particle-hole
approximation used in Refs. 18–20 and 22 and describes the
damping due to the decay of spin fluctuations into electron-
hole excitations. The same result can be deduced if in the
mode-coupling approximation �see Appendix, Eq. �B2�� the
time-dependent spin-correlation function is approximated by
its static value: �Xk2

���t�X−k2

�� ���Xk2

��X−k2

�� �. As our numerical
calculations have shown, the imaginary part of the self-
energy, Eq. �19�, is about twice as large in comparison with
that given by Eq. �17�.

III. NUMERICAL RESULTS

To investigate the magnetic properties of the t-J model, in
particular, the spin dynamics at arbitrary temperatures and
hole concentrations, we start from the GMFA. By Eq. �2� we
get the DSS

��0��q,�� =
m�q�
2�q

� 1

� + �q
−

1

� − �q
� �20�

with m�q� and �q given by Eqs. �9� and �10�, respectively,
and the correlation function

Cq = �Sq
+S−q

− � =
m�q�
2�q

coth
��q

2
. �21�

The electron Green function is calculated in the Hubbard I
approximation which yields
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��Xq
0��Xq

��0���� =
1 − n/2

� − Eq + �
�22�

with Eq=−4�1−n /2�t
q. We get

Fq = �Xq
�0Xq

0�� = �1 − n/2�n�Eq − �� . �23�

The chemical potential � is calculated by the number condi-
tion n= �2 /N��qFq.

To go one step beyond the GMFA, we calculate the self-
energy �Eqs. �15�–�18�� by inserting the GMFA results.
Moreover, for the spectral function Nq��� of the dynamic
charge susceptibility appearing in Eq. �17� we take the
GMFA result of Ref. 30,

Nq
�0���� = 8tF1,0�1 − 
q��1/�q����� − �q� − ��� + �q�� ,

�24�

where �q
2 =8t2�1−
q��1−n /2� in the leading order of dop-

ing.

A. Static properties

Considering first the static magnetic properties in the
GMFA, we have to solve numerically the coupled system of
self-consistency equations for the correlation functions CR
= �1 /N��qCqeiqR and for the transfer amplitudes FR
= �1 /N��qFqeiqR. In the long-range ordered phase, Eq. �12�
and the additional equation �Q=0 determining the conden-
sation part C must be taken into account. To this end, the
parameters �1, �2, �1, and �2, have to be determined, where
the sum rule

C0,0 = �S0
+S0

−� =
1

2
�1 − �� �25�

must be fulfilled at arbitrary temperatures and hole doping.
We fix the decoupling parameters as follows. The param-

eters �1 and �2, are determined in the Heisenberg limit ��
=0� and their values are taken also at finite �. For �=0 we
have FR�0=0 so that the itinerant contribution to the spec-
trum, Eq. �10�, vanishes, and �q agrees with the result of
Ref. 27, where we have to put �2=1, as can be seen from Eq.
�A9�. At T=0 we fix �1 and �2, by the sum rule C0,0=1 /2
and, as an input, by the value of the nearest-neighbor corre-
lation function obtained by ED, C1,0

ED��=0�=−0.234 �Ref.
31�. We get �1=2.285 and �2=2.548. At finite temperatures
we determine �1�T� and �2�T� from the sum rule and the
ansatz �cf. Refs. 27 and 29� r�T�
��1�T�−1� / ��2�T�−1�
=r�0�=0.830.

Considering the parameters �1 and �2, at finite �, at T
=0 we fix them by the sum rule, Eq. �25�, and by the ED
value C1,0

ED��=0.0625;J / t=0.4�=−0.176 �Ref. 31�. We get
�1=0.195 and �2=0.515 with �1 /�2=0.378. At arbitrary
temperatures, doping, and ratios of J / t we determine �1 and
�2 from the sum rule, Eq. �25�, and the ansatz

�1�T,�;J/t�/�2�T,�;J/t� = 0.378. �26�

In Fig. 1 our results for the doping dependence of the spin-
correlation functions at T=0 and J / t=0.4 are presented.
They show a good agreement with the ED data of Ref. 31.

The different signs of Cn,m reflect the AF SRO which gradu-
ally decreases with increasing doping and decreasing ratios
J / t.

Considering the staggered magnetization m��� at zero
temperature which is plotted in Fig. 2, we obtain a strong
suppression of LRO with increasing doping due to the spin-
hole interaction. In the Heisenberg limit we get m�0�
=0.303 which agrees with the value m�0�=0.3074 found in
quantum Monte Carlo �QMC� simulations.32 At the critical
doping �c�J / t� we obtain a transition from the LRO phase to
a paramagnetic phase with AF SRO. It is remarkable that �c
is nearly proportional to J / t. This result agrees with that
found by the cumulant approach of Ref. 33, where our �c
values are somewhat lower �e.g., in Ref. 33, �c�0.06 for
J / t=0.4�. Note that the proportionality �c�J / t was not
found in Ref. 26. The �c values obtained are in qualitative
agreement with neutron-scattering experiments on
La2−�Sr�CuO4 �LSCO� which reveal the vanishing of LRO at
�c�0.02.2

In Fig. 3 the uniform static spin susceptibility �
= �1 /2�limq→0 �q at J / t=0.3 is plotted as a function of dop-
ing at various temperatures. Within our theory, the increase
in ��� ,T� upon doping is caused by the decrease in SRO �cf.
Fig. 1�, i.e., of the spin stiffness against orientation along a
homogeneous external magnetic field. At large enough dop-
ing, � decreases with increasing � due to the decreasing
number of spins. The SRO-induced maximum of � at
�max�T� shifts to lower doping with increasing temperature

FIG. 1. Spin correlation functions vs doping at T=0 and J / t
=0.4 �solid� and the ED data of Ref. 31 �symbols�. The function
C1,0 at J / t=0.2 is plotted by the dashed line.

FIG. 2. Staggered magnetization as a function of doping for
different values of J / t.
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since SRO effects are less pronounced at higher T. The dop-
ing dependence of �, especially the maximum at �max�T� �see
the inset of Fig. 3�, is in accord with the ED results of Ref.
34. Whereas the absolute values of � turn out to be lower
than the ED data, the maximum position is in a remarkably
good agreement with the ED results. Note that in the spin-
rotation invariant approach of Ref. 35 for t�J, the maximum
of � as a function of doping was not reproduced. Our results
are in qualitative agreement with experiments on LSCO,
where the measured doping dependence of the magnetic sus-
ceptibility exhibits a maximum at �max�0.25 over the entire
accessible temperature region, 50�T�400 K.36

Considering the temperature dependence of ��T ,�� at
fixed doping, from Fig. 3 it can be seen that there appears a
maximum at Tmax��� which shifts to lower temperatures with
increasing doping, in qualitative agreement with the ED
data.34 This maximum and the crossover to the high-
temperature Curie law �� �1−�� /T can be understood as a
SRO effect in analogy to the explanation of the doping de-
pendence.

Figure 4 shows the inverse correlation length
�−1�T ,� ,J / t�. The qualitative behavior of � in the zero-

temperature limit as function of doping and J / t can be easily
understood by considering the staggered magnetization at T
=0 depicted in Fig. 2. At a given value of J / t and ���c, in
the limit T→0, AF LRO emerges which is connected with
the closing of the AF gap, �Q→0, and, by Eq. �11�, with the
divergence of �. At zero doping, �−1�T� exhibits the known
exponential decrease as T→0.27,29 At ���c, the ground state
has no AF LRO, i.e., we have �Q�0, and the correlation
length saturates at T→0. Equally, taking T=0, the transition
from the AF LRO phase to a paramagnetic phase with
AF SRO at �=�c is accompanied by the change �−1�0,�
��c ,J / t�=0 to �−1�0,���c ,J / t��0. Considering the influ-
ence of the ratio J / t on the properties of �, let us compare the
curves in Fig. 4 for fixed �=0.04 and J / t=0.4, and 0.2. Ac-
cording to Fig. 2, for J / t=0.4 and J / t=0.2, we have ���c
and ���c, so that �−1�0,� ,J / t=0.4�=0 and �−1�0,� ,J / t
=0.2��0, respectively. The weakening of AF correlations
�decrease in �� with decreasing exchange interaction is in
accord with the results for C1.0 shown in Fig. 1 for J / t=0.4
and 0.2. Note that in Ref. 37 a divergence of � was found as
T→0 for arbitrary values of �, in disagreement with experi-
mental facts. This deficiency may be due to employing vari-
ous decoupling schemes not used in our theory.

To compare the temperature dependence of �−1�T ,�� with
neutron-scattering experiments on LSCO at T�600 K,2 we
take a=3.79 Å and J=130 meV and consider the doping
�=0.04. As can be seen in Fig. 4, we obtain a reasonable
agreement with experiments. Concerning the doping depen-
dence of ��� ,T� depicted in the inset of Fig. 4, it can be
described approximately by the proportionality ��� ,T�
�1 /�� �dashed line� which agrees with the experimental
findings.2

B. Spin dynamics

In this section we present results for the spin-fluctuation
spectra provided by the imaginary part of the DSS ���q ,��,
Eq. �7�, where we neglect the real part of the self-energy
���q ,��, �cf. Ref. 28�. The damping of spin fluctuations
��q ,�� is determined by the imaginary part of the self-
energy, ��q ,��=−�1 /2����q ,��, considered in Sec. II C.
Here we mainly consider the damping at �=�q, �q
=��q ,�q�. It turns out that the major contributions to the
damping are given by the diagonal terms �J��q ,��, Eq. �15�,
and �t��q ,��, Eq. �17�, while the interference terms, such as
�Jt,Jt� �q ,��, Eq. �B4�, appear to be much smaller and may be
neglected. That is, the damping �q, is the sum of the spin-
spin scattering contribution �J,q=−�1 /2��J��q ,�q� and the
spin-hole scattering contribution �t,q=−�1 /2��t��q ,�q�, �q
=�J,q+�t,q. Note that in Refs. 20 and 21 the partition of the
damping into a spin-exchange contribution and a fermionic
contribution was suggested from the ED data. The numerical
calculations of ���q ,��, are performed for the exchange in-
teraction J=0.3t, the value which is usually used in numeri-
cal simulations. This affords us to compare our analytical
results with finite cluster calculations and to check the reli-
ability of our approximations.

Let us first consider the Heisenberg limit �=0. Figure 5
shows the spin-excitation spectrum �q, Eq. �10�, and the

FIG. 3. Uniform static spin susceptibility vs doping at J / t=0.3
for various temperatures. The inset shows the position �max�T� of
the maximum in � vs � in comparison with the ED data �dots� of
Ref. 34.

FIG. 4. Inverse AF correlation length vs T at J / t=0.4 �solid
lines� for doping �=0, 0.04, and 0.1 from bottom to top and at
J / t=0.2 �dashed line� for �=0.04. The neutron-scattering data on
La2−�Sr�CuO4 with �=0.04 are given by symbols �Ref. 2�. The
inset exhibits the doping dependence of the correlation length at
T=0 �solid line� and T=0.1t �dashed line� at J / t=0.4.
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damping �q=�J,q. The results are similar to those obtained in
Ref. 28. In the spin-wave region, at q��1, we get well-
defined quasiparticles with �q��q. For example, for q
=��1 /2,1 /2� and T=0.35J we have q��−1�0.1 �see Fig.
4� and �q /�q�0.1. Well-defined spin excitations for the
two-dimensional Heisenberg model have been found by sev-
eral authors �for a review see Ref. 4�. In particular, as shown
in Ref. 38, if T→0 and q→0 with the restriction q��1, the
ratio of the damping to the spin-wave excitation energy tends
to zero: �J,q /�q→0.

To compare our results for the damping with the QMC
data of Ref. 39, we have considered the linewidth �q of the
relaxation function F�q ,��=4����q�−1���q ,�� at T=0.35J,
where �q�2�q �Ref. 28�, and have found a good agreement.
For a further comparison with the QMC data we calculate the
dynamic structure factor S�q ,��= �1−exp�−����−1���q ,��.
In Fig. 6 our results at T=0.38J and for two wave vectors in
the spin-wave region are plotted. The peaks in S�q ,��, oc-
curring nearly at �q �cf. Fig. 5�, reveal well-defined spin
excitations. Comparing the peak heights with the QMC val-
ues, we get a better agreement than it was found in Ref. 28.
This may be ascribed to Eq. �15� which corrects the result of
Ref. 28 by the appearance of the additional term
�q1q2q3

�q2q1q3
that cannot be written as a square of the vertex

�q1q2q3
.

For nonzero doping the spin-hole scattering contribution
�t��q ,��, Eq. �17�, increases rapidly with doping and tem-

perature and already at moderate hole concentration far ex-
ceeds the spin-spin scattering contribution �J��q ,��, Eq.
�15�, as demonstrated in Figs. 7 and 8. Depending on q,
doping, and temperature, the spin excitations may have a
different character and dynamics. In particular, for the spin-
spin scattering contribution �J��q ,��, we observe, in the
long-wavelength limit, limq→0 �J,q=0, as in the case of the
Heisenberg model shown in Fig. 5. Contrary to this behavior,
the damping �t,q, induced by the spin-hole scattering, is fi-
nite in this limit, both taking Eqs. �17� and �19�. The differ-
ent behavior of �J,q and �t,q may be explained by the differ-
ent q dependence of the spectral functions entering Eqs. �15�
and �17�. Whereas for spin excitations the spectral function is
proportional to m�q� /�q�q for q→0 �see Eq. �20��, for
electrons it is finite in this limit �see Eq. �22��. Therefore, in
the limit of q=q1+q2+q3=0, for the spin-spin scattering the
product m�q1�m�q2�m�q3� /�q1

�q2
�q3

gives a vanishingly
small contribution to the integrals over q1 ,q2 in �J��q ,��,
Eq. �15�, while in the spin-hole self-energy, Eq. �17�, there is
no such a small factor. The physical meaning of the finite
damping �t,q at q=0 can be explained similarly to that of the
finite electrical conductivity in the low-frequency limit,
which is in fact a response function determining the damping
of charge fluctuations at q=0. As is well known, the relax-
ation rate for the conductivity at zero frequency, i.e., the
inverse resistivity, is finite, if one takes into account momen-
tum relaxation of electron-hole pairs on phonons.

To discuss the temperature and doping dependence of the
damping �see Fig. 8� in more detail, we choose q=Q and
consider the damping �Q=−�1 /2����Q ,�Q� as function of T
and � that is plotted in Fig. 9�a�. In the zero-temperature
limit and for ���c, where there is AF LRO �see Fig. 2�, it
can be shown analytically that �Q�T=0,���c�=0. That is,
in the LRO phase we get well-defined spin waves. The van-
ishing of �Q may be explained as follows. Spin excitations at
T=0 can decay into particle-hole excitations with a positive
energy � only to satisfy the energy conservation law. Here,
�=�Q=0 for ���c so that we have no damping. On the
other hand, at T=0 and ���c, there is no LRO and �Q�0
which results in �Q�T=0,���c��0 �see Fig. 9�a� for �
=0.1 and 0.15�. With increasing temperature and doping the
damping increases as expected. To compare our results with
the data of Ref. 21, in Fig. 9�b� the temperature dependence
of the low-energy damping ��Q�=−�1 /2����Q ,�=0� for
various doping is shown. In Ref. 21 the function 
�Q�

FIG. 5. Spectrum �q �solid line� and damping �q �dashed line�
in the Heisenberg limit, �=0, at T=0.35J.

FIG. 6. Dynamic structure factor S�q ,�� in the Heisenberg limit
�=0 at T=0.38J for wave vectors: q1=��1 /2,1 /2� �solid line� and
q2=��5 /8,5 /8� �dashed line� in comparison with the QMC results
of Ref. 39 for q1 �dashed-dotted line� and for q2 �dotted line�.

FIG. 7. Spectrum �q �solid line� and damping �J,q �dotted line�
and �t,q �dashed line� at T=0.15t and �=0.1.

VLADIMIROV, IHLE, AND PLAKIDA PHYSICAL REVIEW B 80, 104425 �2009�

104425-6



=2��Q� was extracted from the finite-T Lanczos data for the
spectral function ���q ,�� using a simplified ansatz for the
spin-excitation spectrum, �q� ��q−Q�2+�2� with �=�−1

taken as a temperature-independent parameter, whereas our
theory allows a direct microscopic calculation of ��Q�. In
the high-temperature region a remarkably good agreement is
found. In the low-temperature region, which is not accessible
by the finite-T Lanczos method, the ED results were extrapo-
lated to T=0 with a finite value of ��Q ;T=0,��0�. This is
in contrast to our result ��Q ;T=0,��=0 �cf. Fig. 9�b��
which agrees with �Q�T=0,���c�=0 �cf. Fig. 9�a�� because
both quantities are calculated for �=0 and which may be
understood as explained above.

As illustrated in Figs. 8 and 9, at low enough doping and
temperature, i.e., at small enough �t,q, we may observe well-
defined high-energy spin-wavelike excitations with q ,k
�1 /� �k= �q−Q�� and �q��q propagating in AF SRO. Con-
sidering, for example, spin excitations with q= �� ,0� at �
=0.1 and T=0.15t, we have q�=5.8 with �=1.85 taken from
Fig. 4, �q=0.66t and �q=0.27t �see Figs. 7 and 8�b��. That
is, in this case we have strongly damped spin waves.

To discuss quantitatively the spectral function ���q ,��,
shown in Figs. 10 and 11, in particular, the position of its
maximum at �m, we first simplify Eq. �7�. By numerical
evaluations, we have found that the imaginary part of the
self-energy only weakly depends on frequency, which quali-
tatively agrees with the results of Ref. 21. Therefore, we put
−���q ,��=�q�2�q. Then, by Eq. �7� we get the resonance
form

���q,�� = m�q�
�q�

��2 − �q
2�2 + �q

2�2 , �27�

which has a maximum at �m
R given by

�m
R =

1
�6

2�q
2 − �q

2 + �12�q
4 + �2�q

2 − �q
2�2�1/2�1/2, �28�

where lim�→0 �m
R =�q.

Let us consider the region of low-frequency overdamped
spin-fluctuation modes playing an important role in the nor-
mal phase of the cuprate superconductors, i.e., ���q��q.
Expanding Eq. �27� with respect to � /�q��q /�q�1 and
using Eq. �3� we get

���q,�� = �q�̃q
�

�2 + �̃q
2

; �̃q =
�q

2

�q
, �29�

where �̃q is the spin-fluctuation excitation energy. Contrary
to Ref. 21, where a similar expression was derived, we do
not use an ansatz for the spin-excitation spectrum �q �see
above� but calculate it microscopically by the GMFA �see
Eq. �10��. The Lorentzian, Eq. �29�, has a maximum at �m

S

= �̃q, which may be also obtained from the expansion of Eq.
�28� with respect to ��q /�q�2. The overdamped form corre-

sponds to the susceptibility ��q ,��=�q�̃q��̃q− i��−1, and, as
a phenomenological ansatz, has been frequently invoked in
the study of cuprates, e.g., in the calculation of the normal-
state spin-fluctuation conductivity.40

(b)(a)

FIG. 8. Doping dependence of damping �q at �a� T=0.1t and �b� T=0.15t.

(b)(a)

FIG. 9. �a� Damping �Q=−�1 /2����Q ,�=�Q� and �b� low-energy damping ��Q�=−�1 /2����Q ,�=0� as functions of temperature and
doping in comparison with the ED data of Ref. 21 �symbols�.
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To exemplify the spin dynamics in different regions, we
first consider spin waves with q= �� ,0� at �=0.1 and T
=0.15t �see above�. We get �see Fig. 11� �m=0.59t��m

R

=0.60t and �m
S =0.81t. That is, we find those excitations to

have a resonance character. On the other hand, the ED data
of Ref. 21 yield evidence for an overdoped spin dynamics.
This difference may be due to a slight underestimation of the
damping in our theory, which can be also seen in the more
pronounced peaks of the dynamic structure factor at �=0
�see Fig. 6� as compared with the QMC data. As seen in Fig.
10�c�, with increasing � the maximum in ���q ,�� with q
= �� ,0� is shifted to lower frequencies, in qualitative agree-
ment with the theory of Ref. 18.

Next we consider the spectral function at q=Q. At very
low doping, e.g., �=0.03, and low enough temperature the
damping �Q is very small �see Figs. 8 and 9�a��, where �Q
��Q. In this case we observe underdamped spin modes
characterized by sharp resonance peaks in ���Q ,��, as seen

in Figs. 10�a� and 10�b�. With increasing doping those modes
evolve into overdamped �relaxation-type� spin-fluctuation
modes �AF paramagnons� described by the broad spectrum,
Eq. �29�. For example, considering the AF mode at �=0.1
and T=0.15t �see Figs. 7, 8�b�, 10�b�, and 11�, we have �Q
=0.4t, �Q=0.24t, and �m=0.32t��m

S =0.33t. That is, the
spectrum of this mode may be well described by the over-
damped form �29�. As seen in Fig. 11, our spin-fluctuation
spectrum is in a remarkably good agreement with the ED
data of Ref. 21. Let us consider the shift of the maximum in
���Q ,�� at �m with increasing doping at fixed temperature.
As can be seen from Figs. 10�a� and 10�b�, at low �high�
temperatures, �m slightly increases �decreases� with doping,
which results from the doping dependence of �q and �q. The
increase in �m with � at low T is in qualitative agreement
with the findings of Ref. 18 �T=0.02t� and with experiments.

In Fig. 12 the dynamic structure factor S�q ,��, resulting
from the spectral function shown in Fig. 11, is plotted. At
�=0, by Eq. �7�, we have S�q ,0�=T�q���q ,0� /�q

2 and for

overdamped modes �Eq. �29�� we get S�q ,0�=T�q / �̃q. The
shape of S�q ,�� for paramagnons is in a marked contrast to
that for spin waves �compare also with Fig. 6�.

Finally, we present results for the local susceptibility

�L���� =
1

N
�
q

���q,�� , �30�

by using the data for ���q ,��, Eq. �7�. In Fig. 13 the local
susceptibility at T=0 and small doping, �=0.04–0.051, is
shown. In the neighborhood of the AF phase transition at T
=0 and �=�c=0.037 �see Fig. 2; �Q=0�, the spin excitations
with q�Q are weakly damped �see Fig. 9�a��. Therefore, at
sufficiently low �, the local susceptibility, which is just the
density of states �DOS� for spin fluctuations, reveals a reso-
nance maximum at a frequency being close to �Q with a high
DOS �see Fig. 13 at �=0.05�. Because �Q and �Q decrease
with decreasing �, the maximum shifts to lower frequencies
and becomes very sharp �in Fig. 13 at �=0.04, only the up-
turn with decreasing frequency is seen�. On the other hand,
with increasing doping the damping becomes large enough to
wash away the maximum �cf. Fig. 13�. Note that we obtain,
in addition to the low-energy maximum, a broad maximum
in �L���� at the maximum energy of spin excitations, �

FIG. 10. Spectral function ���q ,�� for q=Q= �� ,�� at �a� T
=0.1t and �b� T=0.15t for �=0.03 �solid line�, �=0.06 �dashed
line�, and �=0.1 �dotted line�, and for q= �� ,0� at �c� T=0.1t �note
the change in the energy scale�.

FIG. 11. Spectral function ���q ,�� for various wave vectors at
T=0.15t and �=0.1 in comparison with ED data �filled symbols,
Ref. 21�.

FIG. 12. Dynamic structure factor S�q ,�� at T=0.15t and �
=0.1 for various wave vectors.
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�2J=0.6t �cf. Fig. 5�. This feature was not found in Ref. 21
since a simplified spin-excitation spectrum �q was used.

The pronounced upturn behavior is observed in neutron-
scattering experiments on lightly doped cuprate compounds
at low energies and temperatures �see, e.g., Refs. 41 and 42�.
We get a reasonable agreement with experimental data for
La1.96Sr0.04CuO4���50 meV�,41 if we take the energy scale
t=420 meV �see Fig. 13�, which is the standard value of t
�400 meV in the t-J model for cuprates. A much better
agreement with the data in Ref. 41 can be obtained at the
finite temperature T=0.01t but for the energy scale t
=1.1 eV. A qualitatively similar behavior has been found in
Ref. 21 within a semiphenomenological theory, where the
agreement with experiment was achieved by the choice t
�0.1 eV.

Figure 14 shows the scaling function f�� /T�
=�L��� ,T� /�L��� ,T=0�. The scaling behavior is in a remark-
able agreement with the data of the neutron-scattering ex-
periments on La1.96Sr0.04CuO4 �Ref. 41� which is shown by
the solid line and described by the function

f��

T
� =

2

�
arctan�a1��

T
� + a2��

T
�3� , �31�

with a1=0.43 and a2=10.5. A similar scaling was observed
in the underdoped YBa2Cu3O6.35 with the parameters a1

=0.9 and a2=2.8 �Ref. 42�. Our results may be well approxi-
mated by the scaling function, Eq. �31�, with a1=3, but with-
out the �� /T�3 term, a2=0, that gives a nonlinear behavior at
low values of �� /T��1. The weak nonmonotonous behavior
of our scaling function at T=0.01t results from the appear-
ance of a flat maximum in �L��� ,T� �see above�. Note that in
Ref. 21 the same scaling function, Eq. �31�, was found with
a1=1.2 and a2=0, that results in the saturation f�� /T�→1 at
higher values of �� /T��2 and in strong deviations from the
experiments on LSCO reported in Ref. 41, but yields a good
fit to experiments on Zn-substituted YBa2Cu3O6.6.

43 This
variation in the scaling function may be explained by differ-
ent values of doping and of the corresponding parameters
determining the scaling behavior �e.g., the AF correlation
length �, Ref. 21�.

To sum up, our studies of the DSS show a crossover from
well-defined spin-wavelike excitations at low doping and
temperatures to relaxation-type spin-fluctuation excitations
with increasing hole doping, which is in agreement with in-
elastic neutron-scattering experiments and numerical simula-
tions for finite clusters. Moreover, we observe a remarkable
agreement of the scaling function with the data of neutron-
scattering experiments on LSCO.41

IV. CONCLUSION

The relaxation-function theory for the DSS in the t-J
model in terms of Hubbard operators is formulated. By using
a spin-rotation-invariant theory for the DSS derived by us in
Ref. 25, we calculate the static properties in the GMFA simi-
larly to Ref. 26 and the spin-fluctuation spectra. The mode-
coupling approximation for the force-force correlation func-
tions, which take into account both the exchange and kinetic
contributions, was used. For the undoped case described by
the Heisenberg model our results are similar to those in Ref.
28 and for finite doping they show a reasonable agreement
with available ED data and neutron-scattering experiments.

Contrary to the previous studies based on the memory-
function method in Refs. 18–21, we have taken into account
all contributions to the spin-excitation spectrum �q in the
GMFA and to the self-energy ��q ,�� and thoroughly ana-
lyzed their temperature and doping dependence. In particular,
we have found that the contribution from the hole-hopping
term �t2 in the spectrum �q, Eq. �10�, is large even in the
underdoped region, ��0.1, and results in a rapidly increas-
ing with doping gap �Q at the AF wave vector Q. This in-
crease is much larger than in the calculations in Ref. 18,
where the t2 contribution has not been considered. We have
also shown that the largest contribution to the self-energy
��q ,�� comes from the hole-hopping term �t��q ,��� t4, Eq.
�17�, at finite doping �see Fig. 7�. This is in accord with Ref.
20, but contrary to the approximation in Refs. 18, 19, and 22,
where only the mixed contribution �Jt,Jt� �q ,���J2t2 has been
taken into account. The latter approximation should strongly
underestimate the damping of spin excitations at finite dop-
ing. In our calculations of �t��q ,�� we have also considered
explicitly a contribution from spin excitations in the self-
energy �see Eq. �17�� while in Refs. 20 and 22 this contribu-
tion has been considered in some kind of static- or mean-
field-type approximations.

FIG. 13. Local spin susceptibility �L���� at T=0 and small dop-
ing. The intensity scaled experimental data on La1.96Sr0.04CuO4 at
T=10 K are shown by dots �Ref. 41�, where t=420 meV is taken.

FIG. 14. Scaling function f�� /T� for various temperatures at
doping �=0.04. The solid line is the scaling function found in the
neutron-scattering experiments on La1.96Sr0.04CuO4 �Ref. 41� and
given by Eq. �31�.
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A comparison of the DSS derived within the memory-
function approach, Eq. �7�, with the RPA form ��q ,��
=�0�q ,�� / �1−gq�0�q ,��� �see, e.g., Ref. 5� has shown that
the RPA expression provides reasonable results at large dop-
ing, while in the underdoped region the RPA formula fails to
describe spin-wavelike excitations.24 Whereas the damping
of spin excitations in Eq. �7� at low doping is quite small,
e.g., �q�0.2t at �=0.1 �see Fig. 7�, within the RPA it is
much larger, �� t. This results in overdamped spin dynamics
described by Eq. �29� even in the underdoped region. Thus,
we conclude that the relaxation-function approach is a reli-
able theory for studying the spin dynamics in a broad region
of doping and temperatures.

In this paper we have not performed a fully self-consistent
calculation of the electronic and spin-fluctuation spectra by
evaluating the spin-correlation functions, Eq. �21�, in the
GMFA and the electron correlation functions, Eq. �23�, in the
Hubbard I approximation. As was shown in Ref. 44, static
AF spin correlations and self-energy effects result in a strong
renormalization of the electronic spectra and should be taken
into account in a consistent theory. This generalization will
be considered in a subsequent publication. The theory will be
also formulated for the superconducting state by introducing
matrix electronic GF with normal and anomalous compo-
nents as given in Ref. 44.
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APPENDIX A: DECOUPLING PROCEDURE

To calculate the correlation function �−S̈i
+ ,Sl

−� in Eq. �8�
we consider the equation

− S̈i
+ = ��Si

+,�Ht + HJ��,�Ht + HJ�� 
 �
�

Fi
�, �A1�

where Ht and HJ are the hopping and the exchange parts of
Hamiltonian �1� and �= tt, tJ, Jt, and JJ. Here we have

Fi
tt = �

j,n
tijtjn�Hijn

− + Hnji
+ � − �i ⇔ j�� , �A2�

Fi
JJ =

1

4�
j,n

JijJjn�2Pijn + �ijn� − �i ⇔ j�� , �A3�

Fi
Jt = ��Si

+,HJ�,Ht�, Fi
tJ = ��Si

+,Ht�,HJ� , �A4�

where

Hijn
� = Xi

�0Xj
+−Xn

0� + Xi
+0�Xj

00 + Xj
���Xn

0−, �A5�

Pijn = Si
zSj

zSn
+ + Sn

+Si
zSj

z − Si
zSj

+Sn
z − Sn

zSi
zSj

+, �A6�

�ijn = Si
+Sj

−Sn
+ + Sn

+Si
+Sj

− − Si
+Sj

+Sn
− − Sn

−Si
+Sj

+. �A7�

Explicit expressions for Fi
tJ ,Fi

Jt are given in Ref. 25.
To evaluate the corresponding multiparticle correlation

functions in �−S̈q
+ ,S−q

− � we perform the following decoupling
procedure similar to that proposed in Refs. 26, 28, 29, and 35
preserving the local correlations. The correlation functions
from Hijn

� are decoupled as

�Xi
�0Xj

+−Xn
0�,Sl

−� = �1�Xi
�0Xn

0���Sj
+,Sl

−� , �A8�

where for n= i, �Xi
�0Xi

0��= �Xi
���=n /2 and the second term of

Hijn
� with n� i is neglected �cf. Ref. 26�. Decoupling the

correlation functions from �ijn=i and Pij,n=i we introduce the
parameter �2,

��iji,Sl
−� = − ��Xi

++ + Xi
−−�Sj

+,Sl
−� = − �2��Xi

++ + Xi
−−���Sj

+,Sl
−�;

�Piji,Sl
−� = − �1/2���Xi

++ + Xi
−−�Sj

+,Sl
−�

= − �2�1/2���Xi
++ + Xi

−−���Sj
+,Sl

−� , �A9�

where we used the equations: Si
+Si

−=Xi
++, Si

zSi
++Si

+Si
z=0, and

�Si
z�2= �1 /4��Xi

+++Xi
−−�. Here we take �2��1, in contrast to

the approach of Refs. 26 and 45, �2=�1. In the Heisenberg
limit �=0 we have Xi

+++Xi
−−
1 so that �2=1. The param-

eters �1 ,�2 describe the renormalization of the vertex for
spin scattering on charge fluctuations.

Considering the correlation functions from �ijn�i and
Pijn�i, where i , j ,n� forms a nearest-neighbor sequence, we
apply the decoupling scheme used in Refs. 26, 28, and 29

�Si
+Sj

+Sn
−,Sl

−� = �1�Sj
+Sn

−��Si
+,Sl

−� + �2�Si
+Sn

−��Sj
+,Sl

−� .

�A10�

Here, the parameters �1 and �2 are attached to nearest-
neighbor and further-distant correlation functions, respec-
tively, and describe the renormalization of the vertex for
spin-spin scattering. The determination of all parameters is
considered in Sec. III A.

Calculating the spin-excitation spectrum and the static
susceptibility, Eq. �3�, with Eq. �8� we may take into account
only the diagonal contributions, Eqs. �A2� and �A3�, and
omit the mixed contributions corresponding to Fi

Jt, and Fi
tJ,

in Eq. �A4� according to the following reasoning. The mixed
contribution of the type �Fi

Jt ,Sl
−� in the GMFA is proportional

to the difference of the correlation functions of the form
�Xi

++−Xi
−−� or �Xi

0−Xj
0−−Xi

0+Xj
0+�, which vanishes in the para-

magnetic phase. In the same approximation the mixed con-
tribution of the type �Fi

tJ ,Sl
−� turns out to be proportional to

higher-order correlation functions of the type �Xi
+0Xj

0− ,Sl
−�

and may be neglected.

APPENDIX B: MODE-COUPLING APPROXIMATION

Using Eq. �A1� the two-time correlation function in
Eq. �14� yields 16 terms for the self-energy ��q ,��
=��,���,��q ,��, where, e.g., �JJ,JJ�q ,��= ��Fq

JJ � �Fq
JJ�+��� /

m�q�. In the site representation of S̈q
+ in Eq. �14� given by

Eqs. �A1�–�A7� we take into account products of three spin
operators on different sites only. This is clear in the Heisen-
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berg limit,28 where terms with coinciding sites reduce to
single operators and the proper part of the correlation func-
tion in �JJ,JJ is considered. For finite doping, as revealed by
numerical evaluations, the exclusion of terms with coincid-
ing sites yields a better agreement with exact data than the
inclusion of those terms. We calculate the two-time correla-
tion functions in the mode-coupling approximation �see, e.g.,
Ref. 28�, i.e., we approximate them by a product of three
single-particle two-time correlation functions as follows:

�Sk1

z �t�Sk2

z �t�Sk3

− �t�Sk1�
z Sk2�

z Sk3�
+ �

= �Sk1

z �t�S−k1

z ��Sk2

z �t�S−k2

z ��Sk3

− �t�S−k3

+ �

���k1,−k1�
�k2,−k2�

+ �k1,−k2�
�k2,−k1�

��k3,−k3�
, �B1�

�Xk1

0+�t�Xk2

���t�Xk3

−0�t�Xk1�
+0Xk2�

��Xk3�
0−�

= �Xk1

0+�t�Xk1

+0��Xk2

���t�X−k2

�� ��Xk3

−0�t�Xk3

0−��k1,k1�
�k2,−k2�

�k3,k3�
.

�B2�

In Ref. 25 we have shown that in the Born approximation

�i.e., in the second order of the effective vertices t2 ,J2 , tJ�
only six contributions to the self-energy may be retained, so
that

��q,�� = �JJ,JJ�q,�� + �tt,tt�q,�� + �tJ,tJ�q,��

+ �Jt,Jt�q,�� + 2�tJ,Jt�q,�� . �B3�

The imaginary parts of the diagonal terms �JJ,JJ
�J and
�tt,tt
�t are given by Eqs. �15� and �17�. For one of the
interference terms we obtain

�Jt,Jt� �q,�� =
��2t�2�2J�2

m�q��N���
1

N2 �
q1,q2

�q1q2q3

2

�	
−



d�1d�2N��1�

�n��2�n�� − �1 − �2�

�Bq1
��1�Aq2

��2�Aq3
�� − �1 − �2� . �B4�

with �q1q2q3
given by Eq. �16�, where the contributions linear

in 
q reflect the exclusion of terms in S̈i
+ with coinciding

sites.
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